Hecke Operators for Weakly Holomorphic Modular Forms and Supersingular Congruences
نویسنده
چکیده
We consider the action of Hecke operators on weakly holomorphic modular forms and a Hecke-equivariant duality between the spaces of holomorphic and weakly holomorphic cusp forms. As an application, we obtain congruences modulo supersingular primes, which connect Hecke eigenvalues and certain singular moduli.
منابع مشابه
Congruences for Andrews' spt-Function Modulo 32760 and Extension of Atkin's Hecke-Type Partition Congruences
New congruences are found for Andrews’ smallest parts partition function spt(n). The generating function for spt(n) is related to the holomorphic part α(24z) of a certain weak Maass form M(z) of weight 3 2 . We show that a normalized form of the generating function for spt(n) is an eigenform modulo 72 for the Hecke operators T (`2) for primes ` > 3, and an eigenform modulo p for p = 5, 7 or 13 ...
متن کاملDifferential Operators for Harmonic Weak Maass Forms and the Vanishing of Hecke Eigenvalues
For integers k ≥ 2, we study two differential operators on harmonic weak Maass forms of weight 2 − k. The operator ξ2−k (resp. D) defines a map to the space of weight k cusp forms (resp. weakly holomorphic modular forms). We leverage these operators to study coefficients of harmonic weak Maass forms. Although generic harmonic weak Maass forms are expected to have transcendental coefficients, we...
متن کاملEichler-shimura Theory for Mock Modular Forms
We use mock modular forms to compute generating functions for the critical values of modular L-functions, and we answer a generalized form of a question of Kohnen and Zagier by deriving the “extra relation” that is satisfied by even periods of weakly holomorphic cusp forms. To obtain these results we derive an Eichler-Shimura theory for weakly holomorphic modular forms and mock modular forms. T...
متن کاملDifferential Operators and Harmonic Weak Maass Forms
For integers k ≥ 2, we study two differential operators on harmonic weak Maass forms of weight 2 − k. The operator ξ2−k (resp. D) defines a map to the space of weight k cusp forms (resp. weakly holomorphic modular forms). We leverage these operators to study coefficients of harmonic weak Maass forms. Although generic harmonic weak Maass forms have transcendental coefficients, we show that those...
متن کامل`-adic Properties of Smallest Parts Functions
We prove explicit congruences modulo powers of arbitrary primes for three smallest parts functions: one for partitions, one for overpartitions, and one for partitions without repeated odd parts. The proofs depend on `-adic properties of certain modular forms and mock modular forms of weight 3/2 with respect to the Hecke operators T (`).
متن کامل